Тепловые реле

Принцип действия. Долговечность энергетическо­го оборудования в значительной степени зависит от пе­регрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длитель­ности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависи­мость представлена на рис. 1 (кривая 1).

Новый рисунок

При номи­нальном токе допустимая дли­тельность его протекания рав­на бесконечности. Протекание тока, большего, чем номиналь­ный, приводит к дополнитель­ному повышению температу­ры и дополнительному старе­нию изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 устанавли­вается исходя из требуемой продолжительности жизни обо­рудования. Чем короче его жизнь, тем большие перегруз­ки допустимы.Для защиты от перегрузок наиболее широкое рас­пространение получили тепловые реле с биме­таллической пластиной.

Биметаллическая пластина состоит из двух пластин, одна из которых имеет больший температурный коэффи­циент расширения другая — меньший. В месте при­легания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет свар­ки. Если закрепить неподвижно такую пластину и на­греть, то произойдет изгиб пластины в сторону материа­ла с меньшим. Именно это явление используется в теп­ловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение) и немагнитная или хромоникелевая сталь (большое значение).Для получения большего прогиба необходимо, чтобы пластина имела большую длину и малую толщину. На­оборот, если необходимо, чтобы пластина развивала большую силу, целесообразно иметь широкую пластину с малой длиной и большой толщиной.При работе биметаллической-пластины в ее компо­нентах возникают напряжения сжатия и растяжения, ко­торые не должны превышать допустимых значений.

Нагрев биметаллического элемента может произво­диться за счет тепла, выделяемого в пластине током на­грузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при ком­бинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через би­металл, и за счет тепла, выделяемого специальным на­гревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим сво­бодным концом воздействует на контактную систему. Поскольку пластина прогибается медленно, целесообраз­но применять прыгающие контакты (рис.11-11).

Новый рисунок (1)

Прогиб биметаллической пла­стины происходит медленно. Если с пластиной непосредственно свя­зать подвижный контакт, то малая скорость его движения, не смо­жет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устрой­ство. В обесточенном состоянии пружина 1 создает момент отно­сительно точки 0, замыкающий контакты 2. Биметаллическая пла­стина 3 при нагреве изгибается вправо, положение пружины изме­няется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги.

Конструкция тепловых реле. Современные контакторы и пускатели комплектуются с тепло­выми реле ТРП (однофазное) и ТРН (двухфазное). Реле типа ТРП представлено на рис. (11-12).

Новый рисунок (2) 

Биметаллическая пластина имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пласти­ну. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3. Реле позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняю­щей первоначальную деформацию пластины. Такая регулировка по­зволяет резко снизить число потребных вариантов нагревателя. Воз­врат реле в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остыва­ния биметалла. Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды. Уставка меняется на 5% при изменении температуры окру­жающей среды на 10°С. Высокая ударо- и вибростойкость реле по­зволяют использовать его в самых тяжелых условиях.

Читайте также:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Яндекс.Метрика