Контактор постоянного тока КПВ, КТПВ

Коммутирующее устройство. Контакты аппарата подвержены наиболее сильному электрическому и меха­ническому износу ввиду большого числа операций в час и тяжелым условиям работы. С целью уменьшения изно­са преимущественное распространение получили линей­ные перекатывающиеся контакты.

Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, равное при­мерно половине конечной силы нажатия. Большое влия­ние на вибрацию оказывает жесткость крепления непод­вижного контакта и стойкость к вибрациям всего кон­тактора в целом. В этом отношении очень удачна конструкция контактора серии КПВ-600 (рис. 1).

Новый рисунок

Рис.1. Контактор постоянного тока серии КПВ-600.

Не­подвижный контакт 1 жестко прикреплен к скобе 2. Один конец дугогасительной катушки 3 присоединен к этой же скобе. Второй конец катушки вместе с выводом 4 надеж­но скреплен с изоляционным основанием из пластмассы 5. Последнее крепится к прочной стальной скобе 6, кото­рая является основанием аппарата. Подвижный контакт 7 выполнен в виде толстой пластины. Нижний конец пла­стины имеет возможность поворачиваться относительно точки опоры 8. Благодаря этому пластина может перека­тываться по сухарю неподвижного контакта 1. Вывод 9 соединяется с подвижным контактом 7 с помощью гиб­кого проводника (связи) 10. Контактное нажатие созда­ется пружиной 12.

При износе контактов сухарь 1 заменяется новым, а пластина подвижного контакта поворачивается на 180° и неповрежденная сторона ее используется в работе.

Для уменьшения оплавления основных контактов ду­гой при токах более 50 А контактор имеет дугогасительные контакты — рога 2, 11. Под действием магнитного поля дугогасительного устройства опорные точки дуги быстро перемещаются на скобу 2, соединенную с непод­вижным контактом 1, и на защитный рог подвижного

контакта 11. Возврат якоря в начальное положение (пос­ле отключения магнита) производится пружиной 13.

Основным параметром контактора является номи­нальный ток, который определяет размеры контактора.

Так, контактор II величины имеет ток 100 А, III — 150 А.

Характерной особенностью контакторов КПВ-600 и многих других типов является электрическое соединение вывода подвижного контакта с корпусом контактора. Во включенном положении контактора магнитопровод нахо­дится под напряжением. Даже в отключенном положе нии напряжение может оставаться на магнитопроводе и других деталях. Соприкосновение с магнитопроводом по­этому опасно для жизни.

Серия контакторов КПВ имеет исполнение с размы­кающим главным контактом. Замыкание производится за счет действия пружины, а размыкание—за счет си­лы, развиваемой электромагнитом.

Номинальным током контактора называется ток пре­рывисто-продолжительного режима работы. При этом режиме работы контактор находится во включенном состоянии не более 8 ч. По истечении этого промежутка ап­парат должен быть несколько раз включен и отключен (для зачистки контактов от окиси меди). После этого аппарат снова включается.

Если контактор располагается в шкафу, то номи­нальный ток понижается примерно на 10% из-за ухуд­шающихся условий охлаждения.

В продолжительном режиме работы, когда длитель­ность непрерывного включения превышает 8 ч, допусти­мый ток контактора снижается примерно на 20%. В та­ком режиме из-за окисления медных контактов растет переходное сопротивление, что может привести к повы­шению температуры выше допустимой величины. Если контактор имеет небольшое число включений или вообще предназначен для длительного включения, то на рабочую поверхность контактов напаивается серебряная пластина. Серебряная облицовка позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения исполь­зуется в режиме повторно-кратковременного включения, применение серебряных накладок становится нецелесо­образным, так как из-за малой механической прочности серебра происходит быстрый износ контактов.

Необходимо отметить, что если при отключении в повторно-кратковременном режиме длительно горит ду­га (отключается большая индуктивная нагрузка), то температура контактов может резко увеличиться за счет нагрева контактов дугой. В этом случае нагрев контак­тов в продолжительном режиме работы может быть мень­ше, чем в повторно-кратковременном режиме.

Как правило, контактная система   имеет   один   полюс.

Для реверса асинхронных двигателей при большой часто­те включений в час (до 1200) применяется сдвоенная кон­тактная система. В этих кон­такторах типа КТПВ-500, име­ющих электромагнит постоян­ного тока, подвижные контак­ты изолированы от корпуса, что делает более безопасным обслуживание аппарата. Контакторы с двухполюсной контактной системой очень удобно использовать для закорачивания сопротив­лений в цепи ротора асинхронного двигателя.

В контакторах типа КМВ-521 применяется также двухполюсная система. Эти контакторы предназначены для включения и отключения мощных электромагнитов приводов постоянного тока масляных выключателей. На­личие двухполюсной контактной системы, включенной в оба провода сети постоянного тока, обеспечивает на­дежное отключение индуктивной нагрузки.

Дугогасительное устройство. В контакторах по­стоянного тока наибольшее распространение получили устройства с электромагнитным дутьем. При взаимодействии магнитного поля с ду­гой возникает электродинамическая сила, перемещаю­щая дугу с большой скоростью. Для улучшения охлаж­дения дуги ее загоняют в щель из дугостойкого материа­ла с высокой теплопроводностью. При расхождении кон­тактов 1 и 7 между ними возникает дуга 14 (см. рис.1). Дугу можно рассматривать как проводник с то­ком. Катушка 3 создает м. д. с, под действием  которой возникает поток. Этот поток проходит через сердечник катушки, полюсные наконечники 15 и воздушный зазор, в котором горит дуга. На рис. 1 крестиками показано направление магнитного потока между полюсами систе­мы, направленного за плоскость чертежа.

На рис.10-3 изображена зависимость раствора кон­тактов, при котором происходит гашение дуги, от тока и магнитной индукции, полученная О. Б. Броном на маке­те контактора.

Новый рисунок (1)

 При всех значениях индукции В кривые имеют один и тот же характер: при токе 5—7 А кривая  достигает максимума, после чего с ростом тока необхо­димый раствор падает и при токе 200 А все кривые слива­ются. При токе более 7 А на дугу действует электродинами­ческая сила, возникающая как за счет магнитного поля подводящих проводников, так и за счет конфигурации самой дуги (грубо можно представить, что дуга имеет форму части окружности). Эти силы являются решающи­ми для гашения дуги. Чем больше ток в цепи, тем боль­ше электродинамическая сила, растягивающая дугу. В результате при токе 200 А для гашения дуги достаточ­но иметь раствор контактов около 0,15 м. Фактиче­ски при таком токе, как только контакты разойдутся, воз­никающие электродинамические силы выталкивают дугу из межконтактного зазора и перемещают со скоростью несколько десятков метров в секунду. При этом длина дуги, при которой она гаснет, достигает 0,10 м и более.

Наличие внешнего магнитного поля способствует рез­кому сокращению раствора контактов в области малых токов и незначительно сказывается на процесс гашения при токах 100 А и выше. Наиболее оптимальной маг­нитной индукцией является В=0,0069Т. Дальнейшее увеличение индукции мало влияет на процессе гашения, но требует большей мощности для создания магнитного поля и связано с увеличением затрат меди на катушку.

Назначение камеры — локализовать область, занятую раскаленными газами дуги, препятствовать пе­рекрытию между соседними полюсами. При соприкосно­вении дуги со стенками камеры происходит интенсивное охлаждение дуги, что приводит к подъему вольт-ампер­ной характеристики и успешному гашению. Исследования О. Б. Брона показали, что в качестве материала необходимо применять дугостойкую керамику.

Наиболее совершенной является лабиринтно-щелевая камера. Под действием магнитного поля дуга загоняется в суживающуюся зигзагообразную щель. Благодаря увеличению длины дуги и хо­рошему тепловому контакту дуги со стенками камеры происходит ее эффективное гашение. По сравнению  с обычной продольной щелью зигза­гообразная щель уменьшает количество выброшенных из камеры раскаленных газов и, следовательно, зону вы­хлопа.

Вам может также понравиться...

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Яндекс.Метрика