Коммутирующее устройство. Контакты аппарата подвержены наиболее сильному электрическому и механическому износу ввиду большого числа операций в час и тяжелым условиям работы. С целью уменьшения износа преимущественное распространение получили линейные перекатывающиеся контакты.
Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, равное примерно половине конечной силы нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта и стойкость к вибрациям всего контактора в целом. В этом отношении очень удачна конструкция контактора серии КПВ-600 (рис. 1).
Рис.1. Контактор постоянного тока серии КПВ-600.
Неподвижный контакт 1 жестко прикреплен к скобе 2. Один конец дугогасительной катушки 3 присоединен к этой же скобе. Второй конец катушки вместе с выводом 4 надежно скреплен с изоляционным основанием из пластмассы 5. Последнее крепится к прочной стальной скобе 6, которая является основанием аппарата. Подвижный контакт 7 выполнен в виде толстой пластины. Нижний конец пластины имеет возможность поворачиваться относительно точки опоры 8. Благодаря этому пластина может перекатываться по сухарю неподвижного контакта 1. Вывод 9 соединяется с подвижным контактом 7 с помощью гибкого проводника (связи) 10. Контактное нажатие создается пружиной 12.
При износе контактов сухарь 1 заменяется новым, а пластина подвижного контакта поворачивается на 180° и неповрежденная сторона ее используется в работе.
Для уменьшения оплавления основных контактов дугой при токах более 50 А контактор имеет дугогасительные контакты — рога 2, 11. Под действием магнитного поля дугогасительного устройства опорные точки дуги быстро перемещаются на скобу 2, соединенную с неподвижным контактом 1, и на защитный рог подвижного
контакта 11. Возврат якоря в начальное положение (после отключения магнита) производится пружиной 13.
Основным параметром контактора является номинальный ток, который определяет размеры контактора.
Так, контактор II величины имеет ток 100 А, III — 150 А.
Характерной особенностью контакторов КПВ-600 и многих других типов является электрическое соединение вывода подвижного контакта с корпусом контактора. Во включенном положении контактора магнитопровод находится под напряжением. Даже в отключенном положе нии напряжение может оставаться на магнитопроводе и других деталях. Соприкосновение с магнитопроводом поэтому опасно для жизни.
Серия контакторов КПВ имеет исполнение с размыкающим главным контактом. Замыкание производится за счет действия пружины, а размыкание—за счет силы, развиваемой электромагнитом.
Номинальным током контактора называется ток прерывисто-продолжительного режима работы. При этом режиме работы контактор находится во включенном состоянии не более 8 ч. По истечении этого промежутка аппарат должен быть несколько раз включен и отключен (для зачистки контактов от окиси меди). После этого аппарат снова включается.
Если контактор располагается в шкафу, то номинальный ток понижается примерно на 10% из-за ухудшающихся условий охлаждения.
В продолжительном режиме работы, когда длительность непрерывного включения превышает 8 ч, допустимый ток контактора снижается примерно на 20%. В таком режиме из-за окисления медных контактов растет переходное сопротивление, что может привести к повышению температуры выше допустимой величины. Если контактор имеет небольшое число включений или вообще предназначен для длительного включения, то на рабочую поверхность контактов напаивается серебряная пластина. Серебряная облицовка позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных накладок становится нецелесообразным, так как из-за малой механической прочности серебра происходит быстрый износ контактов.
Необходимо отметить, что если при отключении в повторно-кратковременном режиме длительно горит дуга (отключается большая индуктивная нагрузка), то температура контактов может резко увеличиться за счет нагрева контактов дугой. В этом случае нагрев контактов в продолжительном режиме работы может быть меньше, чем в повторно-кратковременном режиме.
Как правило, контактная система имеет один полюс.
Для реверса асинхронных двигателей при большой частоте включений в час (до 1200) применяется сдвоенная контактная система. В этих контакторах типа КТПВ-500, имеющих электромагнит постоянного тока, подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. Контакторы с двухполюсной контактной системой очень удобно использовать для закорачивания сопротивлений в цепи ротора асинхронного двигателя.
В контакторах типа КМВ-521 применяется также двухполюсная система. Эти контакторы предназначены для включения и отключения мощных электромагнитов приводов постоянного тока масляных выключателей. Наличие двухполюсной контактной системы, включенной в оба провода сети постоянного тока, обеспечивает надежное отключение индуктивной нагрузки.
Дугогасительное устройство. В контакторах постоянного тока наибольшее распространение получили устройства с электромагнитным дутьем. При взаимодействии магнитного поля с дугой возникает электродинамическая сила, перемещающая дугу с большой скоростью. Для улучшения охлаждения дуги ее загоняют в щель из дугостойкого материала с высокой теплопроводностью. При расхождении контактов 1 и 7 между ними возникает дуга 14 (см. рис.1). Дугу можно рассматривать как проводник с током. Катушка 3 создает м. д. с, под действием которой возникает поток. Этот поток проходит через сердечник катушки, полюсные наконечники 15 и воздушный зазор, в котором горит дуга. На рис. 1 крестиками показано направление магнитного потока между полюсами системы, направленного за плоскость чертежа.
На рис.10-3 изображена зависимость раствора контактов, при котором происходит гашение дуги, от тока и магнитной индукции, полученная О. Б. Броном на макете контактора.
При всех значениях индукции В кривые имеют один и тот же характер: при токе 5—7 А кривая достигает максимума, после чего с ростом тока необходимый раствор падает и при токе 200 А все кривые сливаются. При токе более 7 А на дугу действует электродинамическая сила, возникающая как за счет магнитного поля подводящих проводников, так и за счет конфигурации самой дуги (грубо можно представить, что дуга имеет форму части окружности). Эти силы являются решающими для гашения дуги. Чем больше ток в цепи, тем больше электродинамическая сила, растягивающая дугу. В результате при токе 200 А для гашения дуги достаточно иметь раствор контактов около 0,15 м. Фактически при таком токе, как только контакты разойдутся, возникающие электродинамические силы выталкивают дугу из межконтактного зазора и перемещают со скоростью несколько десятков метров в секунду. При этом длина дуги, при которой она гаснет, достигает 0,10 м и более.
Наличие внешнего магнитного поля способствует резкому сокращению раствора контактов в области малых токов и незначительно сказывается на процесс гашения при токах 100 А и выше. Наиболее оптимальной магнитной индукцией является В=0,0069Т. Дальнейшее увеличение индукции мало влияет на процессе гашения, но требует большей мощности для создания магнитного поля и связано с увеличением затрат меди на катушку.
Назначение камеры — локализовать область, занятую раскаленными газами дуги, препятствовать перекрытию между соседними полюсами. При соприкосновении дуги со стенками камеры происходит интенсивное охлаждение дуги, что приводит к подъему вольт-амперной характеристики и успешному гашению. Исследования О. Б. Брона показали, что в качестве материала необходимо применять дугостойкую керамику.
Наиболее совершенной является лабиринтно-щелевая камера. Под действием магнитного поля дуга загоняется в суживающуюся зигзагообразную щель. Благодаря увеличению длины дуги и хорошему тепловому контакту дуги со стенками камеры происходит ее эффективное гашение. По сравнению с обычной продольной щелью зигзагообразная щель уменьшает количество выброшенных из камеры раскаленных газов и, следовательно, зону выхлопа.